Respuesta :

cosU:-

[tex]\\ \rm\longmapsto \sqrt{1-sin^2U}=\sqrt{1-49/625}=24/25[/tex]

As U lies in Q3

  • cosU=-24/25

sinV

[tex]\\ \rm\longmapsto \sqrt{1-cos^2V}=\sqrt{1-16/25}=3/4[/tex]

As V lies in Q3

  • sinV=-3/5

So

  • sin(V-U)=sinVcosU-cosVsinU=(-3/5)(-24/25)-(-4/5)(-7/25)=72/125-28/125=72-28/125=44/125
  • cos(U-V)=cosUcosV+sinUsinV=(-24/25)(-4/5)+(-7/25)(-3/5)=96/125+21/125=117/125