Find the total area in the picture. Round to the nearest tenths place.

will recommend to keep in touch with picture as name of sides are based on it!.
It may not get messy so i will divide whole answer into small parts.
Now Let's move to solution :)
[tex] \\ \\ [/tex]
[tex] \gray{ \bf \dag \frak{Part 1}}[/tex]
In this part we will just focus on Semicircle with diameter 22 ft.
Given :-
[tex] \\ [/tex]
To find:-
[tex] \\ [/tex]
So first of all let's convert diameter into radius.
we know:-
[tex] \boxed{ \rm{}radius = \frac{Diameter}{2} }[/tex]
So:-
[tex] \\ [/tex]
[tex] \hookrightarrow\sf{}radius = \dfrac{Diameter}{2} [/tex]
[tex] \\ [/tex]
[tex] \hookrightarrow\sf{}radius = \dfrac{22}{2} [/tex]
[tex] \\ [/tex]
[tex] \hookrightarrow\sf{}radius = \dfrac{2 \times 11}{2} [/tex]
[tex] \\ [/tex]
[tex] \hookrightarrow\sf{}radius = \dfrac{\cancel2 \times 11}{\cancel2} [/tex]
[tex] \\ [/tex]
[tex] \hookrightarrow\sf{}radius = \dfrac{11}{1} [/tex]
[tex] \\ [/tex]
[tex] \hookrightarrow\sf{}radius = 11[/tex]
[tex] \\ \\ [/tex]
Now let's find area of semicircle!
We know:-
[tex] \boxed{ \rm Area~of~semicircle = \frac{\pi {r}^{2} }{2} }[/tex]
[tex] \\ [/tex]
so:-
[tex] \\ [/tex]
[tex] \dashrightarrow\sf Area~of~semicircle _1= \dfrac{\pi {r}^{2} }{2} [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf Area~of~semicircle _1= \dfrac{22 \times {11}^{2} }{7 \times 2} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf Area~of~semicircle _1= \dfrac{\cancel{22} \times {11}^{\cancel2} }{7 \times \cancel2} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf Area~of~semicircle _1= \dfrac{11\times {11}^{\cancel2} }{7} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf Area~of~semicircle _1= \dfrac{1331}{7} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\bf Area~of~semicircle _1= 190.14 \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \gray{ \bf \dag \frak{Part 2}}[/tex]
So in this part we will find area of other semicircle.
Now as u can see BC isn't given , but AC and AB are given.
So let's find BC:-
[tex] \\ [/tex]
Now we got the diameter, so let's change it into radius.
we know:-
[tex] \boxed{ \rm{}radius = \frac{Diameter}{2} }[/tex]
[tex] \\ [/tex]
so :-
[tex] \hookrightarrow\sf{}radius = \dfrac{Diameter}{2} [/tex]
[tex] \\[/tex]
[tex] \hookrightarrow\sf{}radius = \dfrac{8}{2} [/tex]
[tex] \\ [/tex]
[tex] \hookrightarrow\sf{}radius = \dfrac{2 \times 4}{2} [/tex]
[tex] \\ [/tex]
[tex] \hookrightarrow\sf{}radius = \dfrac{\cancel2 \times 4}{\cancel2} [/tex]
[tex] \\ [/tex]
[tex] \hookrightarrow\sf{}radius = 4[/tex]
[tex] \\ [/tex]
Now let's find area of semicircle!
We know:-
[tex] \boxed{ \rm Area~of~semicircle = \frac{\pi {r}^{2} }{2} }[/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow\sf Area~of~semicircle _2= \dfrac{\pi {r}^{2} }{2} [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf Area~of~semicircle _2= \dfrac{22 \times {4}^{2} }{7 \times 2} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf Area~of~semicircle _2= \dfrac{\cancel{22} \times {4}^{\cancel2} }{7 \times \cancel2} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf Area~of~semicircle _2= \dfrac{11\times {4}^{2} }{7} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf Area~of~semicircle _2= \dfrac{11\times 16}{7} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf Area~of~semicircle _2= \dfrac{176}{7} \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\bf Area~of~semicircle _2= 25.14 \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \gray{ \bf \dag \frak{Part 3}}[/tex]
Now Finally in this part we'll add both the areas of these semicircles.
Let :-
[tex] \\ \\ [/tex]
[tex] \sf: \implies Area~of~figure=A_1+A_2 \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \sf: \implies Area~of~figure=190.14+25.14 \\ [/tex]
[tex] \\ \\ [/tex]
[tex] \bf: \implies Area~of~figure=215.28 {ft}^{2} \\ [/tex]
[tex] \\ \\ [/tex]