The constant rate of continuous growth, k, for this population is equal to 2.11935%. And the population will reach 250,000 people in 24.36 years.
For solving this question, you should apply the Population Growth Equation.
The formula for the Population Growth Equation is:
[tex]P_f=P_o*(1+\frac{R}{100} )^t[/tex]
Pf= future population
Po=initial population
r=growth rate
t= time (years)
STEP 1 - Find the constant rate of continuous growth, k, for this population.
For this exercise, you have:
Pf= future population= 185,000 in 2020.
Po=initial population =150,000 in 2010.
r=growth rate= ?
t= time (years)=2020-2010=10
Then,
[tex]P_f=P_o*(1+\frac{R}{100} )^t\\ \\ 185000=150000\cdot \left(1+\frac{R}{100}\:\right)^{10}\\ \\ \left(1+\frac{R}{100}\right)^{10}=\frac{185000}{150000} \\ \\ \left(1+\frac{R}{100}\right)^{10}=\frac{37}{30}\\ \\ R=100\sqrt[10]{\frac{37}{30}}-100=2.11935\%[/tex]
STEP 2 - Find the t for population 250,000 people.
[tex]P_f=P_o*(1+\frac{R}{100} )^t\\ \\ 250000=150000\cdot \left(1+\frac{2.11935}{100}\:\right)^{10}\\ \\ \left(1+\frac{2.11935}{100}\right)^{10}=\frac{250000}{150000} \\ \\ \left(1+\frac{2.11935}{100}\right)^t=\frac{5}{3}\\ \\ t\ln \left(1+\frac{2.11935}{100}\right)=\ln \left(\frac{5}{3}\right)\\ \\ t=\frac{\ln \left(\frac{5}{3}\right)}{\ln \left(\frac{102.11935}{100}\right)}\\ \\ t=24.36[/tex]
Read more about the population growth equation here:
brainly.com/question/25630111