The indefinite integral expressed as an infinite series is;
[tex]= (\Sigma^{\infty} _{n = 0} (-1)^{n} \frac{1 }{2n + 1} * \frac{(x)^{4n + 3}}{4n + 3}) + C[/tex]
We will first have to look for the Maclaurin series of arctan(x).
We'll recall that from online tables of integral, this Maclaurin series of arctan(x) will have the general formula;
[tex]arctan(x) = \Sigma^{\infty} _{n = 0} (-1)^{n} \frac{x^{2n + 1} }{2n + 1}[/tex]
When we apply that general Maclaurin series of arctan(x) to our question of arctan(x²), we have the expression as;
[tex]arctan(x^{2} ) = \Sigma^{\infty} _{n = 0} (-1)^{n} \frac{(x^2)^{2n + 1} }{2n + 1}[/tex]
⇒ [tex]= \Sigma^{\infty} _{n = 0} (-1)^{n} \frac{(x)^{4n + 2} }{2n + 1}[/tex]
We now integrate the expression that we got above in the following manner to get;
[tex]\int\limitsarctan(x^{2} ) = \int\Sigma^{\infty} _{n = 0} (-1)^{n} \frac{(x)^{4n + 2} }{2n + 1} dx[/tex]
⇒ [tex]= (\Sigma^{\infty} _{n = 0} (-1)^{n} \frac{1 }{2n + 1} * \frac{(x)^{4n + 3}}{4n + 3}) + C[/tex]
Thus, that expression gives us the indefinite integral of arctan(x²) as an infinite series.
Read more about the indefinite integral at; https://brainly.com/question/12231722