Given,
[tex] \: [/tex]
To Find,
[tex] \: [/tex]
Solution :
First of all, we'll find the circumference of the circle :
[tex]\\{ \longrightarrow \qquad{ \underline {\boxed{ \pmb{ \mathfrak{ \: \: Circumference_{(circle)} = 2 \pi r}}}}}} \: \: \bigstar \\ \\[/tex]
Now, we'll substitute the required values in the formula :
[tex]\\ { \longrightarrow \qquad{ \sf{ \: \: Circumference_{(circle)} = 2 \times 3.14 \times 3.5}}} \: \: \\ \\[/tex]
[tex] { \longrightarrow \qquad{ \sf{ \: \: Circumference_{(circle)} = 3.14 \times 7}}} \: \: \\ \\[/tex]
[tex] { \longrightarrow \qquad{ \sf{ \pmb{ \: Circumference_{(circle)} = 21.98}}}} \: \: \\ \\[/tex]
Therefore,
[tex] \: [/tex]
Now, we'll find the area of the circle :
[tex]\\{ \longrightarrow \qquad{ \underline {\boxed{ \pmb{ \mathfrak{ \: \: Area_{(circle)} = \pi r^2}}}}}} \: \: \bigstar \\ \\[/tex]
[tex]{ \longrightarrow \qquad{ {{ { \sf{ \: \: Area_{(circle)} = 3.14 \times { \times (3.5)}^{2} }}}}}} \: \: \\ \\[/tex]
[tex]{ \longrightarrow \qquad{ {{ { \sf{ \: \: Area_{(circle)} = 3.14 \times { \times 3.5 \times 3.5 }}}}}}} \: \: \\ \\[/tex]
[tex]{ \longrightarrow \qquad{ {{ { \sf{ \: \: Area_{(circle)} = 3.14 \times 12 .25 }}}}}} \: \: \\ \\[/tex]
[tex]{ \longrightarrow \qquad{ {{\pmb { \sf{ \: \: Area_{(circle)} = 38.465 }}}}}} \: \: \\ \\[/tex]
Therefore,