Respuesta :

Answer:

4th option

Step-by-step explanation:

using the rule of logarithms

[tex]log^{n}[/tex] = nlogx

[tex]3^{7x}[/tex] - 8 = - 2 ( add 8 to both sides )

[tex]3^{7x}[/tex] = 6 ( take the log of both sides )

log[tex]3^{7x}[/tex] = log6

7xlog3 = log6 ( divide both sides by 7log3 )

x = [tex]\frac{log6}{7log3}[/tex] ≈ 0.23 ( to the nearest hundredth )