Respuesta :

Answer:

[tex]D) ~ 14.066[/tex]

Step-by-step explanation:

[tex]~~~~87e^{0.3x} = 5918\\\\\implies e^{0.3x} = \dfrac{5918}{87}\\\\\implies \ln\left(e^{0.3x} \right)=\ln \left( \dfrac{5918}{87} \right)\\\\\implies 0.3x \ln e = \ln \left( \dfrac{5918}{87} \right)\\\\\implies 0.3x = \ln \left( \dfrac{5918}{87} \right)\\\\\implies x = \dfrac{\ln \left( \dfrac{5918}{87} \right)}{0.3}\\\\\implies x \approx14.066[/tex]