Respuesta :

Order of the given expression into smallest to largest are as follow:

[tex]\frac{ \sqrt{\frac{8}{2} } +4 }{6\times (4-12)} < \frac{ \frac{\sqrt{8} }{2} +4}{6\times (4-12)} < \frac{ \frac{\sqrt{8} }{2} +4}{6\times 4-12} < \frac{ \sqrt{\frac{8}{2} } +4 }{6\times 4-12}[/tex]

As given in the question,

Given expressions are as follow:

[tex]\frac{ \sqrt{\frac{8}{2} } +4 }{6\times 4-12},\\\\\frac{ \frac{\sqrt{8} }{2} +4}{6\times 4-12}\\\\\frac{ \sqrt{\frac{8}{2} } +4 }{6\times (4-12)} \\ \\\frac{ \frac{\sqrt{8} }{2} +4}{6\times (4-12)}[/tex]

Arrange them in the order of smallest to largest by simplifying them,

[tex]\frac{ \sqrt{\frac{8}{2} } +4 }{6\times 4-12}= \frac{2+4}{24-12\\}[/tex]

          = 0.5

[tex]\frac{ \frac{\sqrt{8} }{2} +4}{6\times 4-12}= \frac{4+\sqrt{2} }{12}[/tex]

          =0.45

[tex]\frac{ \sqrt{\frac{8}{2} } +4 }{6\times (4-12)} = \frac{2+4}{-48}[/tex]

           = -0.125

[tex]\frac{ \frac{\sqrt{8} }{2} +4}{6\times (4-12)}= \frac{4+\sqrt{2} }{-48}[/tex]

            = -0.1128

-0.125 < -0.1128 < 0.45 < 0.5

Therefore, order of the given expression into smallest to largest are as follow:

[tex]\frac{ \sqrt{\frac{8}{2} } +4 }{6\times (4-12)} < \frac{ \frac{\sqrt{8} }{2} +4}{6\times (4-12)} < \frac{ \frac{\sqrt{8} }{2} +4}{6\times 4-12} < \frac{ \sqrt{\frac{8}{2} } +4 }{6\times 4-12}[/tex]

Learn more about smallest here

brainly.com/question/17748653

#SPJ1