contestada

What is the slope of the tangent line for the function f(x)=2x^2-5x+1 at the point (1,-2)

A. -1
B.-9
C. 1
D. 0
E.9

Respuesta :

This is given by the limit

[tex]\displaystyle \lim_{x\to1} \frac{f(x) - f(1)}{x - 1} = \lim_{x\to1} \frac{(2x^2 - 5x+1) - (-2)}{x - 1} = \lim_{x\to1} \frac{2x^2 - 5x + 3}{x - 1}[/tex]

Observe that [tex]2x^2-5x+3=0[/tex] when [tex]x=1[/tex], and factorizing gives

[tex]2x^2 - 5x + 3 = (x - 1) (2x - 3)[/tex]

so that

[tex]\displaystyle \lim_{x\to1} \frac{f(x) - f(1)}{x - 1} = \lim_{x\to1} (2x-3) = 2\cdot1 - 3 = \boxed{-1}[/tex]

(A)