Respuesta :
For given study the hours of sleep per night is independent of the age.
Also, estimate of the percentages of individuals
Hours of sleep
Age <6 6-6.9 7-7.9 ≥8 Total
≤ 39 38 60 75 67 240
≥ 40 36 57 73 94 260
Total 74 117 148 161 500
% 14.8% 23.4% 29.6% 32.2%
Let the null hypothesis H0 : Hours of sleep per night is independent of age
alternate hypothesis Ha : Hours of sleep per night is not independent of age
Expected frequencies :
E1: ((38+60+75+67)*(38+36))/500 = 35.52
E2: ((38+60+75+67)*(60+57))/500 = 56.16
E3: ((38+60+75+67)*(77+75))/500 = 72.96
E4: ((38+60+75+67)*(65+92))/500 = 75.36
E5: ((36+57+73+94)*(38+36))/500 = 38.48
E6: ((36+57+73+94)*(60+57))/500 = 60.84
E7: ((36+57+73+94)*(77+75))/500 = 79.04
E8: ((36+57+73+94)*(65+92))/500 = 81.64
Then performing the Chi-square independence test X²
X² = Σ[(f1-e1)²/e1 + (f2-e2)²/e2... (fn - en)²/en]
F1 to f8 = 38,60,75,67,36,57,73,94
X² = ((38-49.92)^2)/35.52 + ((60-56.16)^2)/56.16 + ((77-72.96)^2)/72.96 + ((65-75.36)^2)/75.36 + ((36-38.48)^2)/38.48 + ((57-60.84)^2)/60.84 + ((75-79.04)^2)/79.04 + ((92-81.64)^2)/81.64
X² = 4.00
α = 0.05
Reject H0, if p < α
df = (row - 1)*( column - 1)
df = (2 - 1)*(4-1)
= 3
To find the p value from the X² square score at α = 0.05 and 3 degree of freedom
p = 0.261
Since, p > α ( 0.261 > 0.05) ; The result is not significant at α = 0.05 ; Hence we fail to reject the H0 (null hypothesis).
Now we need to estimate of the percentages of individuals who sleep fewer than 6 hours, 6 to 6.9 hours, 7 to 7.9 hours, and 8 hours or more per night.
Hours of sleep
Age <6 6-6.9 7-7.9 ≥8 Total
≤ 39 38 60 75 67 240
≥ 40 36 57 73 94 260
Total 74 117 148 161 500
% 14.8% 23.4% 29.6% 32.2%
Therefore, we can conclude that the hours of sleep per night is independent of the age.
Learn more about the test statistic here:
https://brainly.com/question/14128303
#SPJ4