Respuesta :

[tex]\frac{\sin(R)}{PQ} = \frac{\sin(Q)}{PR}[/tex]

[tex]\frac{\sin(R)}{24.7} = \frac{\sin(43^{\circ})}{16.9}[/tex]

[tex]\sin(R) = 24.7*\frac{\sin(43^{\circ})}{16.9}[/tex]

[tex]\sin(R) \approx 0.9967668[/tex]

[tex]R \approx \arcsin(0.9967668)[/tex]

[tex]R \approx 85.39137896^{\circ}[/tex]

[tex]R \approx 85^{\circ}[/tex]

The final answer is 85 degrees