[tex]\bf \qquad \qquad \qquad \qquad \textit{function transformations}
\\ \quad \\
% function transformations for trigonometric functions
\begin{array}{rllll}
% left side templates
f(x)=&{{ A}}cos({{ B}}x+{{ C}})+{{ D}}
\\ \quad \\
\end{array}[/tex]
[tex]\bf \begin{array}{llll}
% right side info
\bullet \textit{ stretches or shrinks}\\
\quad \textit{horizontally by amplitude } |{{ A}}|\\\\
\bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\
\qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\
\qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\
\end{array}[/tex]
[tex]\bf \begin{array}{llll}
\bullet \textit{vertical shift by }{{ D}}\\
\qquad if\ {{ D}}\textit{ is negative, downwards}\\
\qquad if\ {{ D}}\textit{ is positive, upwards}\\\\
\bullet \textit{function period}\\
\qquad \frac{2\pi }{{{ B}}}\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\
\qquad \frac{\pi }{{{ B}}}\ for\ tan(\theta),\ cot(\theta)
\end{array}[/tex]
now...let's take a peek a this equation then [tex]\bf \begin{array}{llllll}
y=&-4cos(x)&+3\\
&\ \uparrow &\uparrow \\
&A&D
\end{array}[/tex]
so... is really just the graph of cos(x), with that amplitude and shifted that much