The formula for the volume of a cone is v=1/3pir^2h find the radius to the nearest hundredth of a cone with a height of 3 in and a volume of 12 in

Respuesta :

[tex]\bf \textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}\qquad \begin{cases} r=radius\\ h=height\\ -----\\ V=12\\ h=3 \end{cases}\implies 12=\cfrac{\pi \cdot r^2\cdot 3}{3} \\\\\\ 12=\pi r^2\implies \cfrac{12}{\pi }=r^2\implies \sqrt{\cfrac{12}{\pi }}=r[/tex]