[tex]\bf \qquad \qquad \qquad \qquad \textit{function transformations}
\\ \quad \\\\
% left side templates
\begin{array}{llll}
f(x)=&{{ A}}({{ B}}x+{{ C}})+{{ D}}
\\ \quad \\
y=&{{ A}}({{ B}}x+{{ C}})+{{ D}}
\\ \quad \\
f(x)=&{{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}}
\\ \quad \\
f(x)=&{{ A}}(\mathbb{R})^{{{ B}}x+{{ C}}}+{{ D}}
\\ \quad \\
f(x)=&{{ A}} sin\left({{ B }}x+{{ C}} \right)+{{ D}}
\end{array}\\\\
--------------------[/tex]
[tex]\bf \bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\\\
\bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\
\left. \qquad \right. \textit{reflection over the x-axis}
\\\\
\bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\
\left. \qquad \right. \textit{reflection over the y-axis}[/tex]
[tex]\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\
\left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\
\left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\
\bullet \textit{ vertical shift by }{{ D}}\\
\left. \qquad \right. if\ {{ D}}\textit{ is negative, downwards}\\\\
\left. \qquad \right. if\ {{ D}}\textit{ is positive, upwards}\\\\
\bullet \textit{ period of }\frac{2\pi }{{{ B}}}[/tex]
with that template in mind, let's see
[tex]\bf y=(x-12)^2+3\implies y=\stackrel{A}{1}(\stackrel{B}{1}x\stackrel{C}{-12})^2\stackrel{D}{+3}[/tex]
A = 1, so no change there from the parent.
B = 1, no change there either
C = -12, now, C/B is -12/1 or -12, that means a horizontal right shift of 12
D = +3, this means, going up by 3 units.