The system shown has the unique solution (2, y, z). Solve the system and select the values that complete the solution. y = 0 y = 2 y = 3 z = 0 z = 2 z = 3 3x-2y+3z=0 (1) -3x - 5y - 5z= -21 (2) x=2 (3)
So we are given a system: [tex]3x-2y+3z=0\\
-3x - 5y - 5z= -21[/tex] Substitute x = 2 we get the system: [tex]-2y+3z=-6\\
- 5y - 5z= -15[/tex] Multiply the first equation by -5 and the second by 2 we get the system: [tex]10y-15z=30\\
- 10y - 10z= -30[/tex] Adding the two equations we get : [tex]-25z=0\text{ then}z=0.[/tex] We find the value of y by using any of the other equations like this: [tex]-2y=-6\\y=3.[/tex] Final solution: [tex]z=0,y=3[/tex]