Important formula we will use. First formula 2 cos α sin β = sin (α + β) - sin (α - β) Second formula ∫ sin x dx = - cos x + c
We should change the trigonometry expression from multiplication into addition. Use the first formula above ∫ 8 sin (2x) cos (3x) dx = ∫ 4 ( 2 sin (2x) cos (3x) dx) = 4 ∫ 2 cos (3x) sin (2x) dx = 4 ∫ sin (3x + 2x) - sin (3x - 2x) dx = 4 ∫ sin 5x - sin x dx
After changing into addition, solve the integration. Use the second formula. = 4 ∫ sin 5x - sin x dx [tex]= 4(- \frac{1}{5} cos5x-cosx)+c[/tex] [tex]= - \frac{4}{5} cos5x-4cosx+c[/tex] This is the answer.