Respuesta :

we have

[tex]f(x)=-(x+8)(x-14)[/tex]

Convert to vertex form

[tex]f(x)=-(x+8)(x-14)\\f(x)=-( x^{2}-14x+8x-112) \\f(x)=-( x^{2}-6x-112)\\f(x)=-x^{2}+6x+112[/tex]

we know that

the equation of a vertical parabola in vertex form is equal to

[tex]y=a(x-h)^{2} +k[/tex]

where

(h,k) is the vertex

[tex]f(x)=-x^{2}+6x+112[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]f(x)-112=-(x^{2}-6x)[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]f(x)-112-9=-(x^{2}-6x+9)[/tex]

[tex]f(x)-121=-(x^{2}-6x+9)[/tex]

Rewrite as perfect squares

[tex]f(x)-121=-(x-3)^{2}[/tex]

[tex]f(x)=-(x-3)^{2}+121[/tex]

the vertex is the point [tex](3,121)[/tex]

therefore

the answer is

The y-value of the vertex is [tex]121[/tex]

Answer: d. 121 on edgen2021

Step-by-step explanation: